The Axiom of Choice and maximal δ-separated sets

Michał Dybowski

Warsaw University of Technology
Faculty of Mathematics and Information Sciences

Definition

Let $\delta>0$. We say that a subset Y of a pseudometric space (X, d) is δ-separated set if $d(x, y)>\delta$ for all distinct points $x, y \in Y$.

Definition

Let $\delta>0$. We say that a subset Y of a pseudometric space (X, d) is δ-separated set if $d(x, y)>\delta$ for all distinct points $x, y \in Y$.

It is easy to see that for every $\delta>0$ an existence of a maximal (under inclusion " \subset ") δ-separated set is guaranteed by Zorn's Lemma (so by the Axiom of Choice equivalently).

In fact, the following fact holds:

In fact, the following fact holds:

Proposition

The following statement is equivalent with AC:
(i) For every metric space (X, d) and $\delta>0$ there exists a maximal δ-separated set.

In fact, the following fact holds:
Proposition
The following statement is equivalent with AC:
(i) For every metric space (X, d) and $\delta>0$ there exists a maximal δ-separated set.

Proof.
$(\mathrm{i}) \Longrightarrow(\mathbf{A C})$:

In fact, the following fact holds:
Proposition
The following statement is equivalent with AC:
(i) For every metric space (X, d) and $\delta>0$ there exists a maximal δ-separated set.

Proof.
(i) $\Longrightarrow(\mathbf{A C}):$ Let $\left\{A_{\alpha}\right\}_{\alpha \in \Lambda}$ be an arbitrary family of nonempty pairwise disjoint sets and let $X=\bigcup_{\alpha \in \Lambda} A_{\alpha}$.

In fact, the following fact holds:
Proposition
The following statement is equivalent with AC:
(i) For every metric space (X, d) and $\delta>0$ there exists a maximal δ-separated set.

Proof.

(i) $\Longrightarrow(\mathbf{A C})$: Let $\left\{A_{\alpha}\right\}_{\alpha \in \Lambda}$ be an arbitrary family of nonempty pairwise disjoint sets and let $X=\bigcup_{\alpha \in \Lambda} A_{\alpha}$. We define metric d on X as follows:

$$
d(x, y)= \begin{cases}0, & \text { if } x=y \\ 1 / 2, & \text { if } x \neq y \text { and } x, y \in A_{\alpha} \text { for some } \alpha \in \Lambda \\ 1, & \text { otherwise }\end{cases}
$$

In fact, the following fact holds:

Proposition

The following statement is equivalent with AC:
(i) For every metric space (X, d) and $\delta>0$ there exists a maximal δ-separated set.

Proof.

(i) $\Longrightarrow(\mathbf{A C})$: Let $\left\{A_{\alpha}\right\}_{\alpha \in \Lambda}$ be an arbitrary family of nonempty pairwise disjoint sets and let $X=\bigcup_{\alpha \in \Lambda} A_{\alpha}$. We define metric d on X as follows:

$$
d(x, y)= \begin{cases}0, & \text { if } x=y \\ 1 / 2, & \text { if } x \neq y \text { and } x, y \in A_{\alpha} \text { for some } \alpha \in \Lambda \\ 1, & \text { otherwise }\end{cases}
$$

Then a maximal $3 / 4$-separated set in (X, d) contains exactly one element from each set A_{α}.

In view of this proposition, it is natural to ask what is the set-theoretic status of an existence of maximal δ-separated sets in some classes of metric spaces.

In view of this proposition, it is natural to ask what is the set-theoretic status of an existence of maximal δ-separated sets in some classes of metric spaces.

Fact (ZF)
Let $\delta>0$ and (X, d) be a pseudometric space such that all δ-separated sets in X are finite and their cardinalities are uniformly upper bounded by some constant C. Then, there exists a maximal δ-separated set.

In view of this proposition, it is natural to ask what is the set-theoretic status of an existence of maximal δ-separated sets in some classes of metric spaces.

Fact (ZF)
Let $\delta>0$ and (X, d) be a pseudometric space such that all δ-separated sets in X are finite and their cardinalities are uniformly upper bounded by some constant C. Then, there exists a maximal δ-separated set.

Theorem (D., Górka)
The following statement is equivalent with DC:
(\star) Let $\delta>0$ and (X, d) be a (pseudo)metric space such that all δ-separated sets in X are finite. Then, there exists a maximal δ-separated set.

Fact (ZF)

Let $\delta>0$ and (X, d) be a pseudometric space which contains a finite $\delta / 2$-cover. Then, there exists a maximal δ-separated set.

Fact (ZF)

Let $\delta>0$ and (X, d) be a pseudometric space which contains a finite $\delta / 2$-cover. Then, there exists a maximal δ-separated set.

Theorem (D., Górka)
The following statement is equivalent with DC:
(\star) Let $\delta>0$ and (X, d) be a (pseudo)metric space which contains a countable $\delta / 2$-cover. Then, there exists a maximal δ-separated set.

Fact (ZF)

Let $\delta>0$ and (X, d) be a pseudometric space which contains a finite $\delta / 2$-cover. Then, there exists a maximal δ-separated set.

Theorem (D., Górka)
The following statement is equivalent with DC:
(\star) Let $\delta>0$ and (X, d) be a (pseudo)metric space which contains a countable $\delta / 2$-cover. Then, there exists a maximal δ-separated set.

Corollary (DC)

For every separable pseudometric space (X, d) and $\delta>0$ there exists a maximal δ-separated set.

Fact (ZF)

Let $\delta>0$ and (X, d) be a pseudometric space which contains a finite $\delta / 2$-cover. Then, there exists a maximal δ-separated set.

Theorem (D., Górka)
The following statement is equivalent with DC:
(\star) Let $\delta>0$ and (X, d) be a (pseudo)metric space which contains a countable $\delta / 2$-cover. Then, there exists a maximal δ-separated set.

Corollary (DC)

For every separable pseudometric space (X, d) and $\delta>0$ there exists a maximal δ-separated set.

```
Problem
Is this corollary equivalent with DC?
```


Definition

We say that metric space X is geometrically doubling if there exists a constant $M \in \mathbb{N}$ such that for every $r>0$ every ball of radius r can be covered by at most M balls of radius $r / 2$.

Definition

We say that metric space X is geometrically doubling if there exists a constant $M \in \mathbb{N}$ such that for every $r>0$ every ball of radius r can be covered by at most M balls of radius $r / 2$.

Definition

Let (X, d) be a metric space. We say that the Borel measure μ on X is doubling if the measure of every open ball is finite and positive and there exists a constant $C \geq 1$ such that for every $x \in X$ and $r>0$

$$
\mu(B(x, 2 r)) \leq C \mu(B(x, r))
$$

Some of the most famous theorems about these spaces:

Some of the most famous theorems about these spaces:

- Every geometrically doubling space is separable;

Some of the most famous theorems about these spaces:

- Every geometrically doubling space is separable;
- Every metric space which admits a doubling measure is geometrically doubling (Coifmann, Weiss);

Some of the most famous theorems about these spaces:

- Every geometrically doubling space is separable;
- Every metric space which admits a doubling measure is geometrically doubling (Coifmann, Weiss);
- Every compact geometrically doubling metric space carries a doubling measure (Volberg, Konyagin);

Some of the most famous theorems about these spaces:

- Every geometrically doubling space is separable;
- Every metric space which admits a doubling measure is geometrically doubling (Coifmann, Weiss);
- Every compact geometrically doubling metric space carries a doubling measure (Volberg, Konyagin);
- Every complete geometrically doubling metric space carries a doubling measure (Luukkainen, Saksman);

Some of the most famous theorems about these spaces:

- Every geometrically doubling space is separable;
- Every metric space which admits a doubling measure is geometrically doubling (Coifmann, Weiss);
- Every compact geometrically doubling metric space carries a doubling measure (Volberg, Konyagin);
- Every complete geometrically doubling metric space carries a doubling measure (Luukkainen, Saksman);
- For every geometrically doubling space (X, d) and $\varepsilon \in(0,1)$ the space $\left(X, d^{\varepsilon}\right)$ admits a bilipschitz embedding into \mathbb{R}^{N} for some $N \in \mathbb{N}$ (Assouad).

Theorem (D., Górka)

The following statements are equivalent with CC:

Theorem (D., Górka)
The following statements are equivalent with CC:
(i) For every $\delta>0$ and pseudometric space which admits a doubling measure there exists a maximal δ-separated set;

Theorem (D., Górka)
The following statements are equivalent with CC:
(i) For every $\delta>0$ and pseudometric space which admits a doubling measure there exists a maximal δ-separated set;
(ii) For every $\delta>0$ and geometrically doubling pseudometric space there exists a maximal δ-separated set;

Theorem (D., Górka)
The following statements are equivalent with CC:
(i) For every $\delta>0$ and pseudometric space which admits a doubling measure there exists a maximal δ-separated set;
(ii) For every $\delta>0$ and geometrically doubling pseudometric space there exists a maximal δ-separated set;
(iii) Every geometrically doubling pseudometric space is separable.

Theorem (\diamond)

Let (X, d) be a pseudometric space. Then, the space X is separable if and only if there exists a Borel measure μ on X such that the measure of every open ball is positive and finite.

Theorem (\diamond)

Let (X, d) be a pseudometric space. Then, the space X is separable if and only if there exists a Borel measure μ on X such that the measure of every open ball is positive and finite.

Proof of the impliaction \Longrightarrow.
Let $\left\{x_{i}\right\}_{i=1}^{\infty}$ be a dense subset of X.

Theorem (\diamond)
Let (X, d) be a pseudometric space. Then, the space X is separable if and only if there exists a Borel measure μ on X such that the measure of every open ball is positive and finite.

Proof of the impliaction \Longrightarrow.
Let $\left\{x_{i}\right\}_{i=1}^{\infty}$ be a dense subset of X. Then we define Borel measure μ as follows:

$$
\mu=\sum_{i=1}^{\infty} \frac{1}{2^{i}} \delta_{x_{i}} .
$$

The known proofs of the reverse implication are based on the maximal δ-separated sets or Vitali $5 r$-covering lemma which, in the general case, apply the Axiom of Choice.

The known proofs of the reverse implication are based on the maximal δ-separated sets or Vitali $5 r$-covering lemma which, in the general case, apply the Axiom of Choice.

Theorem (D, Górka)
The implication \Longleftarrow in the Theorem \diamond is equivalent with CC.

