The Axiom of Choice and maximal δ -separated sets

Michał Dybowski

Warsaw University of Technology Faculty of Mathematics and Information Sciences

	bowski

Maximal δ -separated sets

Definition

Let $\delta > 0$. We say that a subset Y of a pseudometric space (X, d) is δ -separated set if $d(x, y) > \delta$ for all distinct points $x, y \in Y$.

	bowski

- 4 回 ト 4 ヨ ト 4 ヨ ト

Definition

Let $\delta > 0$. We say that a subset Y of a pseudometric space (X, d) is δ -separated set if $d(x, y) > \delta$ for all distinct points $x, y \in Y$.

It is easy to see that for every $\delta > 0$ an existence of a maximal (under inclusion " \subset ") δ -separated set is guaranteed by Zorn's Lemma (so by the Axiom of Choice equivalently).

・ロト ・四ト ・ヨト ・ヨト

<ロト <回ト < 回ト < 回ト < 回ト -

2

Proposition

The following statement is equivalent with **AC**:

(i) For every metric space (X,d) and $\delta>0$ there exists a maximal $\delta\text{-separated set.}$

Proposition

The following statement is equivalent with **AC**:

(i) For every metric space (X,d) and $\delta>0$ there exists a maximal $\delta\text{-separated set.}$

Proof.

(i) \implies (AC):

Michał Dybowski

Proposition

The following statement is equivalent with **AC**:

(i) For every metric space (X,d) and $\delta>0$ there exists a maximal $\delta\text{-separated set.}$

Proof.

(i) \implies (AC): Let $\{A_{\alpha}\}_{\alpha \in \Lambda}$ be an arbitrary family of nonempty pairwise disjoint sets and let $X = \bigcup_{\alpha \in \Lambda} A_{\alpha}$.

Proposition

The following statement is equivalent with **AC**:

(i) For every metric space (X,d) and $\delta>0$ there exists a maximal $\delta\text{-separated set.}$

Proof.

(i) \implies (AC): Let $\{A_{\alpha}\}_{\alpha \in \Lambda}$ be an arbitrary family of nonempty pairwise disjoint sets and let $X = \bigcup_{\alpha \in \Lambda} A_{\alpha}$. We define metric d on X as follows:

$$d(x,y) = \begin{cases} 0, & \text{if } x = y; \\ 1/2, & \text{if } x \neq y \text{ and } x, y \in A_{\alpha} \text{ for some } \alpha \in \Lambda; \\ 1, & \text{otherwise.} \end{cases}$$

Proposition

The following statement is equivalent with **AC**:

(i) For every metric space (X,d) and $\delta>0$ there exists a maximal $\delta\text{-separated set.}$

Proof.

(i) \implies (AC): Let $\{A_{\alpha}\}_{\alpha \in \Lambda}$ be an arbitrary family of nonempty pairwise disjoint sets and let $X = \bigcup_{\alpha \in \Lambda} A_{\alpha}$. We define metric d on X as follows:

$$d(x,y) = \begin{cases} 0, & \text{ if } x = y; \\ 1/2, & \text{ if } x \neq y \text{ and } x, y \in A_{\alpha} \text{ for some } \alpha \in \Lambda; \\ 1, & \text{ otherwise.} \end{cases}$$

Then a maximal 3/4-separated set in (X, d) contains exactly one element from each set A_{α} .

Michał Dybowski

In view of this proposition, it is natural to ask what is the set-theoretic status of an existence of maximal δ -separated sets in some classes of metric spaces.

Michał Dybowski	
-----------------	--

In view of this proposition, it is natural to ask what is the set-theoretic status of an existence of maximal δ -separated sets in some classes of metric spaces.

Fact (**ZF**)

Let $\delta > 0$ and (X, d) be a pseudometric space such that all δ -separated sets in X are finite and their cardinalities are uniformly upper bounded by some constant C. Then, there exists a maximal δ -separated set.

In view of this proposition, it is natural to ask what is the set-theoretic status of an existence of maximal δ -separated sets in some classes of metric spaces.

$\mathsf{Fact}\;(\mathbf{ZF})$

Let $\delta > 0$ and (X, d) be a pseudometric space such that all δ -separated sets in X are finite and their cardinalities are uniformly upper bounded by some constant C. Then, there exists a maximal δ -separated set.

Theorem (D., Górka)

The following statement is equivalent with **DC**:

 $(\star) \ \ {\rm Let} \ \ \delta>0 \ {\rm and} \ (X,d) \ {\rm be} \ {\rm a} \ ({\rm pseudo}){\rm metric space such that all} \\ \delta {\rm -separated sets in} \ \ X \ {\rm are finite.} \ \ {\rm Then, \ there \ exists \ a \ maximal} \\ \delta {\rm -separated \ set.}$

Michał Dybowski	N	lichał	Dybow	ski
-----------------	---	--------	-------	-----

Let $\delta > 0$ and (X, d) be a pseudometric space which contains a finite $\delta/2$ -cover. Then, there exists a maximal δ -separated set.

		· · · · · · · · · · · · · · · · · · ·
Michał Dybowski	Maximal δ -separated sets	30.01.2023

5/10

Let $\delta > 0$ and (X, d) be a pseudometric space which contains a finite $\delta/2$ -cover. Then, there exists a maximal δ -separated set.

Theorem (D., Górka)

The following statement is equivalent with **DC**:

(*) Let $\delta > 0$ and (X, d) be a (pseudo)metric space which contains a countable $\delta/2$ -cover. Then, there exists a maximal δ -separated set.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Let $\delta > 0$ and (X, d) be a pseudometric space which contains a finite $\delta/2$ -cover. Then, there exists a maximal δ -separated set.

Theorem (D., Górka)

The following statement is equivalent with **DC**:

(*) Let $\delta > 0$ and (X, d) be a (pseudo)metric space which contains a countable $\delta/2$ -cover. Then, there exists a maximal δ -separated set.

Corollary (DC)

For every separable pseudometric space (X, d) and $\delta > 0$ there exists a maximal δ -separated set.

< □ > < □ > < □ > < □ > < □ > < □ >

Let $\delta > 0$ and (X, d) be a pseudometric space which contains a finite $\delta/2$ -cover. Then, there exists a maximal δ -separated set.

Theorem (D., Górka)

The following statement is equivalent with **DC**:

(*) Let $\delta > 0$ and (X, d) be a (pseudo)metric space which contains a countable $\delta/2$ -cover. Then, there exists a maximal δ -separated set.

Corollary (DC)

For every separable pseudometric space (X,d) and $\delta>0$ there exists a maximal $\delta\text{-separated set}.$

Problem

Is this corollary equivalent with DC?

	bows	

< 1 k

Definition

We say that metric space X is geometrically doubling if there exists a constant $M \in \mathbb{N}$ such that for every r > 0 every ball of radius r can be covered by at most M balls of radius r/2.

Definition

We say that metric space X is geometrically doubling if there exists a constant $M \in \mathbb{N}$ such that for every r > 0 every ball of radius r can be covered by at most M balls of radius r/2.

Definition

Let (X, d) be a metric space. We say that the Borel measure μ on X is doubling if the measure of every open ball is finite and positive and there exists a constant $C \ge 1$ such that for every $x \in X$ and r > 0

$$\mu\left(B(x,2r)\right) \le C\mu\left(B(x,r)\right).$$

	bows	

	•		≣
Michał Dybowski	Maximal δ -separated sets	30.01.2023	7 / 10

• Every geometrically doubling space is separable;

Michał D	ybowski
----------	---------

- Every geometrically doubling space is separable;
- Every metric space which admits a doubling measure is geometrically doubling (Coifmann, Weiss);

- T

- Every geometrically doubling space is separable;
- Every metric space which admits a doubling measure is geometrically doubling (Coifmann, Weiss);
- Every compact geometrically doubling metric space carries a doubling measure (Volberg, Konyagin);

- Every geometrically doubling space is separable;
- Every metric space which admits a doubling measure is geometrically doubling (Coifmann, Weiss);
- Every compact geometrically doubling metric space carries a doubling measure (Volberg, Konyagin);
- Every complete geometrically doubling metric space carries a doubling measure (Luukkainen, Saksman);

- Every geometrically doubling space is separable;
- Every metric space which admits a doubling measure is geometrically doubling (Coifmann, Weiss);
- Every compact geometrically doubling metric space carries a doubling measure (Volberg, Konyagin);
- Every complete geometrically doubling metric space carries a doubling measure (Luukkainen, Saksman);
- For every geometrically doubling space (X, d) and $\varepsilon \in (0, 1)$ the space (X, d^{ε}) admits a bilipschitz embedding into \mathbb{R}^N for some $N \in \mathbb{N}$ (Assouad).

イロト イヨト イヨト イヨト

The following statements are equivalent with **CC**:

Michał Dybowski	Maximal δ -separated sets	30.01.2023	8 / 10
		A B > A B > A B > A B > A B > A B > A B > A B > A B > A B > A B > A B > A B > A B > A B > A B > A B > A B > A B A A A	≣ ୬ ୯ ୯

The following statements are equivalent with CC:

(i) For every $\delta > 0$ and pseudometric space which admits a doubling measure there exists a maximal δ -separated set;

Michał Dybowski	Maximal δ -separated sets	30.01.2023	8 / 10
		(日本(四本(日本(日本)目	596

The following statements are equivalent with CC:

- (i) For every $\delta > 0$ and pseudometric space which admits a doubling measure there exists a maximal δ -separated set;
- (ii) For every $\delta > 0$ and geometrically doubling pseudometric space there exists a maximal δ -separated set;

The following statements are equivalent with CC:

- (i) For every $\delta > 0$ and pseudometric space which admits a doubling measure there exists a maximal δ -separated set;
- (ii) For every $\delta > 0$ and geometrically doubling pseudometric space there exists a maximal δ -separated set;
- (iii) Every geometrically doubling pseudometric space is separable.

Mic	hał	Dy	bowski

Theorem (\Diamond)

Let (X, d) be a pseudometric space. Then, the space X is separable if and only if there exists a Borel measure μ on X such that the measure of every open ball is positive and finite.

Theorem (\Diamond)

Let (X, d) be a pseudometric space. Then, the space X is separable if and only if there exists a Borel measure μ on X such that the measure of every open ball is positive and finite.

Proof of the impliaction \implies .

Let $\{x_i\}_{i=1}^{\infty}$ be a dense subset of X.

Michał Dybowski	Maximal δ -separated sets	30.01.2023	= ♥) ⊄ (♥ 9 / 10
			= nar

Theorem (\Diamond)

Let (X, d) be a pseudometric space. Then, the space X is separable if and only if there exists a Borel measure μ on X such that the measure of every open ball is positive and finite.

Proof of the impliaction \implies .

Let $\{x_i\}_{i=1}^\infty$ be a dense subset of X. Then we define Borel measure μ as follows:

$$\mu = \sum_{i=1}^{\infty} \frac{1}{2^i} \delta_{x_i}.$$

	<		୬ବଙ
Michał Dybowski	Maximal δ -separated sets	30.01.2023	9 / 10

The known proofs of the reverse implication are based on the maximal δ -separated sets or Vitali 5r-covering lemma which, in the general case, apply the Axiom of Choice.

	pows	

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

The known proofs of the reverse implication are based on the maximal δ -separated sets or Vitali 5r-covering lemma which, in the general case, apply the Axiom of Choice.

Theorem (D, Górka)

The implication \iff in the Theorem \Diamond is equivalent with **CC**.

Michał E	Dybowski
----------	----------